skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Livanos, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep anomaly detection (AD) is perhaps the most controver- sial of data analytic tasks as it identifies entities that are then specifically targeted for further investigation or exclusion. Also controversial is the application of AI to facial imaging data. This work explores the intersection of these two areas to understand two core questions: ”Who” these algorithms are being unfair to and equally important ”Why”. Recent work has shown that deep AD can be unfair to different groups despite being unsupervised with a recent study showing that for portraits of people: men of color are far more likely to be chosen to be outliers. We study the two main categories of AD algorithms: autoencoder-based and single-class-based which effectively try to compress all the instances with those that can not be easily compressed being deemed to be out- liers. We experimentally verify sources of unfairness such as the under-representation of a group (e.g. people of color are relatively rare), spurious group features (e.g. men are often photographed with hats), and group labeling noise (e.g. race is subjective). We conjecture that lack of compressibility is the main foundation and the others cause it but experimen- tal results show otherwise and we present a natural hierarchy amongst them. 
    more » « less
  2. Knowledge distillation is a simple but powerful way to transfer knowledge between a teacher model to a student model. Existing work suffers from at least one of the following key limitations in terms of direction and scope of transfer which restrict its use: all knowledge is transferred from teacher to student regardless of whether or not that knowledge is useful, the student is the only one learning in this exchange, and typically distillation transfers knowledge only from a single teacher to a single student. We formulate a novel form of knowledge distillation in which many models can act as both students and teachers which we call cooperative distillation. The models cooperate as follows: a model (the student) identifies specific deficiencies in it's performance and searches for another model (the teacher) who encodes learned knowledge into instructional virtual instances via counterfactual instance generation. Because different models may have different strengths and weaknesses, all models can act as either students or teachers (cooperation) when appropriate and only distill knowledge in areas specific to their strengths (focus). Since counterfactuals as a paradigm are not tied to any specific algorithm, we can use this method to distill knowledge between learners of different architectures, algorithms, and even feature spaces. We demonstrate our approach not only outperforms baselines such as transfer learning, self-supervised learning, and multiple knowledge distillation algorithms on several datasets, but it can also be used in settings where the aforementioned techniques cannot. 
    more » « less